Hi all!
I’m currently trying to setup a simple pipeline with yolo pose + tracker.
The attached YAML works fine, but how to link the tracker results back to the tracked object?
It seems the trackers meta data does not contain any reference to the tracked object from stage 1.
I feel like I’ missing something obvious here..
axelera-model-format: 1.0.0
name: yolo11lpose-coco-tracker
description: yolo11l pose estimation with ByteTrack tracking
pipeline:
- keypoint_detections:
model_name: yolo11lpose-coco-onnx
input:
type: image
preprocess:
- letterbox:
height: ${{input_height}}
scaleup: true
width: ${{input_width}}
- torch-totensor:
inference:
handle_all: false
postprocess:
- decodeyolopose:
box_format: xywh
conf_threshold: 0.65
max_nms_boxes: 3000
nms_iou_threshold: 0.45
nms_top_k: 300
normalized_coord: false
- tracking:
model_name: tracker
input:
source: full
color_format: RGB
cv_process:
- tracker:
algorithm: bytetrack
bbox_task_name: keypoint_detections
min_width: 20
min_height: 20
history_length: 30
algo_params:
frame_rate: 20
track_buffer: 30
models:
yolo11lpose-coco-onnx:
class: AxONNXModel
class_path: $AXELERA_FRAMEWORK/ax_models/base_onnx.py
weight_path: weights/yolo11l-pose.onnx
weight_url: https://media.axelera.ai/artifacts/model_cards/weights/yolo/keypoint_detection/yolo11l-pose.onnx
weight_md5: a0c2124d8dfec01a427cc8b11bae0255
task_category: KeypointDetection
input_tensor_layout: NCHW
input_tensor_shape: [1, 3, 640, 640]
input_color_format: RGB
num_classes: 1
dataset: CocoDataset-keypoint-COCO2017
extra_kwargs:
compilation_config:
quantization_scheme: per_tensor_min_max
ignore_weight_buffers: false
tracker:
model_type: CLASSICAL_CV
task_category: ObjectTracking
datasets:
CocoDataset-keypoint-COCO2017:
class: KptDataAdapter
class_path: $AXELERA_FRAMEWORK/ax_datasets/objdataadapter.py
data_dir_name: coco
label_type: COCO2017
operators:
decodeyolopose:
class: DecodeYoloPose
class_path: $AXELERA_FRAMEWORK/ax_models/decoders/yolopose.py
Any hints?
For now I use an extra IoU step to match the bbox’es from tracker and keypoint detection, but that’s just a workaround really..

